Max-1 peptide – Hydrogel forming peptide

Hydrogels are a class of materials that are promising candidates for use in soft tissue and bone engineering. Hydrogels have a high water content, suitable viscoelasticity and biocompatibility.
Using hydrogel can help for biomedical applications such as tissue engineering, encapsulation methods for cells and biomolecules, drug delivery or some injectable delivery vehicles for therapeutics.
However, hydrogels are mainly used for their antimicrobial properties which are due to the surface of the hydrogel, having the capacity to disrupt negatively-charged bacterial membrane via electrostatic interactions. Antimicrobial activities of hydrogels were shown against gram-positive bacteria such as S.Aureus and gram-negative bacteria like E.Coli.
The main interest of employing hydrogels is its biocompatibility in vitro and in vivo which permits to hydrogel to be able to perform an appropriate host response in a specific situation.
It also seems that the antimicrobial peptide-based hydrogels are very effective against biofilm adhesion likely due to the physical mode of action involving bacterial membrane disruption.

Max-1 peptide is the first MAX peptide described, a 20-amino acid peptide designed to understand peptide intramolecular folding. Max-1 peptide is appropriate for making hydrogels owing to its ability to change its structural conformation according to environmental changes. Max-1 peptide stays unfolded and soluble in a low ionic strength aqueous solution (10 mM NaCl) at neutral pH, however with a high salt concentration (150 mM NaCl) or a higher pH, Max-1 peptide folds into an amphiphilic β-hairpin conformation that can self-assembles to form a network of fibrils that conducts to the formation of a hydrogel hairpin.

Technical specification

Max-1 peptide buy Sequence: VKVKVKVKVpPTKVKVKVKV-NH2
Max-1 peptide synthesis MW : 2 230,91 Da (C107H200N28O22)
Max-1 peptide price Purity : > 95%
Peptide Library synthesis Counter-Ion : TFA Salts (see option TFA removal)
Peptide library synthesis Max-1 peptide Delivery format : Freeze dried in propylene 2mL microtubes
peptide solubility guidelines Peptide Solubility Guideline
buy peptide price Bulk peptide quantities available


Product catalog Size Price € HT Price $ USD
SB005-01MG 0.1 mg 165 206
SB005-05MG 0.5 mg 578 722



1- Rughani RV, Schneider JP. MRS Bull. (2008)
Max-1 peptide Molecular Design of β-Hairpin Peptides for Material Construction



Self-assembled materials composed of β-sheet forming peptides hold promise as therapeutics and novel biomaterials. This article focuses on the design and engineering of amphiphilic peptide sequences, especially β-hairpins. Peptides can be designed to intramolecularly fold and then self-assemble on cue, affording hydrogels rich in β-sheet structure. Hydrogels having distinct material properties can be designed at the molecular level by modulating either the peptide’s sequence or the environmental stimulus used to trigger folding and assembly, leading to gelation.