OVA 257 264 peptide (SIINFEKL)– CAS: 138831-86-4
Ovalbumin protein
OVA 257-264 (H-2Kb) is an epitope of interest of the egg white albumen, ovalbumin. Ovalbumin is a glycoprotein that is sufficiently large and complex to be mildly immunogenic. Indeed, it has been demonstrated that Ovalbumin contains B-cell epitopes which are recognized by specific IgE antibodies and CD4 T cell epitopes restricted by the MHC I-Ad molecule in mice and by HLA-D molecule in human.
Applications of OVA 257-264
OVA 257-264 is used to stimulate T cells in PBMCs and to quantify peptide epitope specificity and IFN-γ releasing effector cells by ELISPOT assay. OVA 257-264 is also used to test new adjuvant in immunotherapeutic vaccine development. OVA 257-264 can form a stable hydrogel and stimulate a immune response. This reaction seems to be linked with OVA 257-264 property to self-assemble into a hydrogel.
SB-PEPTIDE offers the scrambled version of OVA 257-264 peptide (see section « OVA 257-264 scrambled« ) and OVA peptide pool.
Technical specification
Sequence : SIINFEKL | |
MW : 963.16 Da (C45H74N10O13) | |
Purity : > 95% | |
Counter-Ion : TFA Salts (see option TFA removal) | |
Delivery format : Freeze dried in propylene 2mL microtubes | |
Other names : 1p1z, 1p4l, HY-P1489, CAS: 138831-86-4 | |
Peptide Solubility Guideline | |
Bulk peptide quantities available – Carrier conjugation upon request Made in France – For research use only |
Price
Product catalog | Size | Price € HT | Price $ USD |
SB031-1MG | 1 mg | 77 | 96 |
SB031-5MG | 5 mg | 270 | 337 |
SB031-2*5MG | 2×5 mg | 385 | 481 |
SB031-5*10MG | 5×10 mg | 737 | 921 |
SB-PEPTIDE offers a wide range of antigens on catalog. Browse our antigen catalog to find out more.
SB-PEPTIDE offers non-conformational epitope mapping service. SB-PEPTIDE can synthesize the antigenic protein as a library of overlapped peptides (usually 15aa, 5aa overlap) and perform ELISA to determine the epitope.
References
Cell Metabolism. 2023 Apr 04;35(4):P633-650.e9. doi: https://doi.org/10.1016/j.cmet.2023.02.013
Linoleic acid potentiates CD8+ T cell metabolic fitness and antitumor immunity
The metabolic state represents a major hurdle for an effective adoptive T cell therapy (ACT). Indeed, specific lipids can harm CD8+ T cell (CTL) mitochondrial integrity, leading to defective antitumor responses. However, the extent to which lipids can affect the CTL functions and fate remains unexplored. Here, we show that linoleic acid (LA) is a major positive regulator of CTL activity by improving metabolic fitness, preventing exhaustion, and stimulating a memory-like phenotype with superior effector functions. We report that LA treatment enhances the formation of ER-mitochondria contacts (MERC), which in turn promotes calcium (Ca2+) signaling, mitochondrial energetics, and CTL effector functions. As a direct consequence, the antitumor potency of LA-instructed CD8 T cells is superior in vitro and in vivo. We thus propose LA treatment as an ACT potentiator in tumor therapy.
Sci Rep. 2019 Feb 25;9(1):2696. doi: https://doi.org/10.1038/s41598-019-39148-8
Ovalbumin Epitope SIINFEKL Self-Assembles into a Supramolecular Hydrogel
Here we show that the well-known ovalbumin epitope SIINFEKL that is routinely used to stimulate ovalbumin-specific T cells and to test new vaccine adjuvants can form a stable hydrogel. We investigate properties of this hydrogel by a range of spectroscopic and imaging techniques demonstrating that the hydrogel is stabilized by self-assembly of the peptide into nanofibres via stacking of β-sheets. As peptide hydrogels are known to stimulate an immune response as adjuvants, the immunoactive properties of the SIINFEKL peptide may also originate from its propensity to self-assemble into a hydrogel. This finding requires a re-evaluation of this epitope in adjuvant testing.
Methods Mol Biol. 2019;1988:109-122. doi: https://doi.org/10.1007%2F978-1-4939-9450-2_9
A SIINFEKL-Based System to Measure MHC Class I Antigen Presentation Efficiency and Kinetics
BACKGROUND:
Antigen presentation by classical MHC class I molecules to CD8+ T cells is a central aspect of the adaptive immune response. Here, we describe methods to monitor antigen presentation using the model ovalbumin Kb-binding peptide, SIINFEKL. SIINFEKL genetically incorporated into viral or cellular source proteins can be used to precisely probe various aspects of antigen presentation, including the kinetics of peptide generation, MHC class I surface stability, and presentation efficiency following pharmacological and genetic manipulations including genome wide and high throughput drug screening.
Infect Immun. 2018 Jun 21;86(7):e00281-18. doi: https://doi.org/10.1128/iai.00281-18
Brucella Peptide Cross-Reactive Major Histocompatibility Complex Class I Presentation Activates SIINFEKL-Specific T Cell Receptor-Expressing T Cells
Brucella spp. are intracellular pathogenic bacteria remarkable in their ability to escape immune surveillance and therefore inflict a state of chronic disease within the host. To enable further immune response studies, Brucella was engineered to express the well-characterized chicken ovalbumin (OVA). Surprisingly, we found that CD8 T cells bearing T cell receptors (TCR) nominally specific for the OVA peptide SIINFEKL (OT-1) reacted to parental Brucella-infected targets as well as OVA-expressing Brucella variants in cytotoxicity assays. Furthermore, splenocytes from Brucella-immunized mice produced gamma interferon (IFN-γ) and exhibited cytotoxicity in response to SIINFEKL-pulsed target cells.To determine if the SIINFEKL-reactive OT-1 TCR could be cross-reacting to Brucella peptides, we searched the Brucella proteome using an algorithm to generate a list of near-neighbor nonamer peptides that would bind to H2Kb Selecting five Brucella peptide candidates, along with controls, we verified that several of these peptides mimicked SIINFEKL, resulting in T cell activation through the « SIINFEKL-specific » TCR. Activation was dependent on peptide concentration as well as sequence. Our results underscore the complexity and ubiquity of cross-reactivity in T cell recognition. This cross-reactivity may enable microbes such as Brucella to escape immune surveillance by presenting peptides similar to those of the host and may also lead to the activation of autoreactive T cells.
Blood. 2006 Jul 15;108(2):544-50. doi: https://doi.org/10.1182/blood-2005-10-4015
Synergistic activation of dendritic cells by combined Toll-like receptor ligation induces superior CTL responses in vivo
Toll-like receptors (TLRs) are able to interact with pathogen-derived products and their signals induce the coordinated activation of innate and adaptive immune mechanisms. Dendritic cells (DCs) play a central role in these events. As the different TLRs are able to trigger MyD88/TRIF-dependent and -independent signaling pathways, we wondered if the simultaneous activation of these signaling cascades would synergize with respect to DC activation and induce superior cytotoxic T-lymphocyte (CTL) activity in vivo. We observed that indeed the combined activation of MyD88-dependent and -independent signaling induced by TLR7 and TLR3 ligands provoked a more rapid and more sustained bone marrow-derived DC (BMDC) activation with regard to the secretion of proinflammatory cytokines, like IL-6 and IL-12p70, and the expression of costimulatory molecules like CD40, CD70, and CD86. Furthermore, in the presence of combined TLR ligand-stimulated DCs, CD4(+) and CD8(+) T cells were insensitive toward the inhibitory effects of regulatory T cells. Most importantly, peptide-loaded BMDCs stimulated by TLR ligand combinations resulted in a marked increase of CTL effector functions in wild-type mice in vivo. Thus, our results provide evidence that unlocking the full potential of DCs by advanced activation protocols will boost their immunogenic potential and improve DC-based vaccination strategies.